Software Creation Project

A New Way of Automatic Design of Software (Simulating Human Intentional Activity)

Zenya Koono Creation Project Hassan Abolhassani Sharif University of Technology Hui Chen Kokushikan University

Motivation: Automatic design, like a human designer does.

- -Strategy: commonality of human knowledge for various activities
- -Tactic: Learn from a human designer through their documents

Attainments: Automation in the lower programming level Human designs may be reproduced by this approach Quantitative evaluations revealed the inside of human design -> Impacts on S/W Engineering

Outline:

- 1. Human design, by repetitive hierarchical decompositions
- 2. Automatic design system
- 3. Quantitative evaluations reflecting 'Human Intelligence'
- 4. Concluding remarks

Intelligence by natural language

Software Creation Project

Software design	Hardware design	Human society	Natural language	
Hierarchica design 1971: Wilth Stepwise detailing 1970's-80's Structured designs	Hierarchical design 19-> 20 century Top down design From coarse to fine	Words AD 1st century New Tastament, The First Epistel General of John CHAPTER 1-1 That which was from the beginning, which we have heard, which we have heard, which we have seen with our eyes, which we have looked upon, and our hands have handled, of the Word of life;	Natural language Neanderthalensis, living in caves, perished. During the coldest period of the last glacial age (20000 years ago) Homo sapiens, building houses, survived. Studies show that their civilization, built by their natural language,	
Copyright Koono enabled them to survive				

1. Zipf's law of least efforts (Ergonomics)

When a person faces a problem, the person tries to solve it in the easiest way. If unsuccessful, the person tries in a more difficult way. Repeat this until it is solved. A multiplicity of engines works in a human brain.

2. Typical three engines by Rasmussen's

Among engines, there are three typical patterns.

Level Fred	luency
Skill-based: Simple and fast, reflective operation	Large
Rule-based: Intention -> grammar -> English, French,	Small
Knowledge-based: Solution using Basic Concept Dictionary	Very small

What is a software design

Software Creation Project

Programming education starts using natural language What happens if it is continued and extended further?

*Human design is Repetitive hierarchical decompositions of concept

- *The decomposition is to use 'parent to children' relationship
- A pair of the parent and the children is named as a 'Design rule'
- *A design rule is formed in Skill-based, Rule-based or Knowledge-based

Human intentional activity

Repetitive hierarchical decompositions appear in software design, management and physical work

They are human intentional activity

Mechanization of design

Software Creation Project

This automatic design, learnt from a human designer, does a design graphically, just the same way as a human designer does

It details both DFD and structured chart PAD (instead of flowchart)

Structured chart Problem Analysis Diagram Operations: Concatenation, decision and repetition Graphic symbol with statement Sequence: Goes in a top down manner Detailing: Child(ren) put in the right side

Automatic acquisition (skill)

Software Creation Project

Automatic acquisition is made by a tree-walk,

starting from the parent with a starting mark, goes around the children and returns to the original parent.

Information gained from each symbol is purified to be a design rule, a pair of the parent and the child(ren).

Automatic acquisition (skill)

Software Creation Project

Automatic acquisition is made by a tree-walk,

starting from the parent with a starting mark, goes around the children and returns to the original parent.

Information gained from each symbol is purified to be a design rule, a pair of the parent and the child(ren).

Automatic design (skill)

Software Creation Project

Automatic design is made by, referring Skill-base by the parent, and pasting the desired children to the right. In rule-based and Knowledge based mode, engines are used for generating a design rule.

Automatic design (skill)

Software Creation Project

Automatic design is made by,
referring Skill-base by the parent, and
pasting the desired children to the right.
In rule-based and Knowledge based mode,
engines are used for generating a design rule.

Intelligent CASE (ICASE) tool

Software Creation Project

Image: Second	Developed in 1998
Image: Sector sector Image: Sector sector Part acc Image: Sector sector Part acc Image: Sector sector Image: Sector sector Image: Sector sector Part acc Image: Sector sector Image: Sector sector Image: Sector sector Image: Sector Image: Sector sector Image: Sector Image: Sector <	Skill-based operations using PAD CASE tool Automatic acquisition Automatic design Manual selection

Off the shelf PAD CASE tool added with tree-walk programs, graphical acquisition program, and graphical pasting program.

Knowledge-Base for storing skill-based knowledge or a design rule

Controller implemented by Finite State Machine model following SDL technology

Event driven Operating system for controller

Software **Knowledge-based operation** Creation Project The Input-side Most Abstract Point Time The Output (Def) Second 1 Sec clock Clock surface The Input Real time 1. Basic Concept Dictionary clock 2. Normal / inverse reading 3. Exhaustive operations 4. Small functions (e.g. Create Function name) 5. Dedicated solution **Copyright Koono**

Examples of design

Software Creation Project

'Inventory control system' in order to know actual human design

- 1. Small but consistent.
- 2. Business sys., where rules are clear.
- Initial 7 programs (approx. 700 C lines) and additional 7 as the maintenance

DFD and PAD designs in a small step of detailing (see right side) Rigorous checks repeated

From analyses of design results, keys for rule-based operation and Design Direction Finder were found, and the reproduction of human designs becomes possible.

Figure 4.1.E. Sequence of a design

Small step of detailing resulted in;

A few variation on patterns of ['verb' + 'object'], (Restricted grammar)

where 'objects' are data under processing. --> Frame memory for a rule

Data defines the way of the processing

The output data defines 80% and the input data defines the way of the processing.

--> Automatic direction of design possible, Design Direction Finder

Integrated Intelligent CASE tool

Software

Creation

The S/W size of a CASE tool is approx. 4 - 5 Kilo lines of C code. Most of programs are common to all the CASE tools.

Verb dictionary using frame memory

Software Creation Project

*Data for skeleton: blank data - children concept verb - blank data *Method: data transfer to data, in the skeleton, from parent (input) data, insertion of preposition, and so on

PAD operation here may be omitted where derivation form DFD is possible

Design Direction Finder

Software Creation Project

- *A verb has several meanings. In the previous ICASE, the manual selection was needed.
- *Design Direction Finder automatically selects the required meaning page.
- *The meaning is defined by
 - 1. output data
- 2. input data
- *DDFT has a column of input data, output data and the meaning. *DDFT is scanned with the present input and output data to define
- the meaning

Integrated Intelligent CASE tool

- Completed in Feburary, 2001
- It was confirmed that human designs may be reproduced.
- Chinese patent granted in 2006.
- USA one is going on.
- Japanese one will advance next.

Evaluation (Skill-based)

Copyright Koono

(Linear)

Evaluation (Rule-based)

Evaluation (knowledge-based)

Software Creation Project

If hr hand is defined as a short hand, The pair may not be identified.
If Basic Concept Dictionary has ['short hand' = hour hand], and the pair search is extended to translate 'short hand', it may be automatically Designed. Knowledge-based is used where all rule-based operations fail. It works by <u>its control logic</u> using <u>definition</u> in BCD.

Evaluation (cost)

Software Creation Project

Development efforts of the design knowledge, shown in balloons, are small. It has been brought by following factors.

1. A small step of hierarchical decomposition of concept is taken.

2. Graphic operation substitutes design.

Concluding remarks

An automatic design system, a human intelligence simulator
Reproduction of human design (skill, rule and knowledge)
Highly cost effective like a designer
Dictionary (human memory structure) oriented
Graphic operation like human design
Learning system

Future works Evolution to be a human simulator

Applications

Humanoid robot, intelligent control like human Quantitative, rational and scientific S/W Engineering Research tool for research of Human Intelligence

Applications to Software Engineering

Software Creation Project

An automatic design system, a human intelligence simulator
Reproduction of human design (skill, rule and knowledge)
Highly cost effective like a designer
Dictionary (human memory structure) oriented
Graphic operation like human design
Learning system

Future works Evolution to be a human simulator

Applications

Humanoid robot, intelligent control like human Quantitative, rational and scientific S/W Engineering Research tool for research of Human Intelligence

Proof of linear nature

Software Creation Project

Attenuation rate by test

Software Creation Project

