
Toward Quantitative, Rational and
Scientific Software Process

Zenya Koono1 and Hui Chen2

1 Nara Institute of Science and Technology, Honfujisawa 2-12-5, 251-0875, Japan

 koono@vesta.ocn.ne.jp
2 Center for Information Science, Kokushikan University, 154-8515, Tokyo, Japan

chen@kokushikan.ac.jp

Abstract. The most important characteristics of a software process are those of
product, cost and quality. For this purpose, this paper proposes a quantitative
model based on the scientific nature of a software process.

1 Introduction

It is well known that quantitative basis of a process is indispensable for the rational
and scientific evaluations and improvements. But, that for a software process has not
yet been established. The purpose of this paper is to propose a quantitative
model[1~4]. Based on field data, a simple mechanism, resulting in the characteristic,
is derived. By repeating it, a whole model of a software process is obtained. This
measures AS-IS characteristic of a process, independent of ways of the development,
and it enables to improve a process toward any direction needed.

2 Fundamental relationships

Fig. 1 shows software size vs. man-hours and errors of actual data[5~6]. The center
bold line is the main trend line (Y = AX1 + B) of plots. Following may be obtained:

z S/w process is a linear system,
where decomposition as well
as integration is possible.

z Man-hours and errors are
proportional to s/w size, when
the process is kept.

z Plots distribute in a lognormal
distribution, ranging from 1/N
to N (where N = 4~5) of the
center value. (Max/min) ratio
ranges from 16 to 25. Fig. 1 Software size vs. man-hour and error

a b

D
ev

el
op

m
en

t
m

an
m

on
th

1M20K10K 100K0.2M1K 2K

200

 20

100

10

1000

 2000

10000

DSI :Delived
Source code
Instruction

Software size in DSI

x 4

x 1/4

11
10
16
14
9

x 5

N
um

be
r o

f
er

ro
rs

46

43

12

37

10
x 1/5

50

20

10

5

2

1

100

10 30 100 300 1000 3000

Software size

chen
454

Figure 2 shows accumulation curves of errors. Pure design, in the most left, builds

in errors at a rate. In following processes, errors are checked out as shown.
z Built-in number of errors is obtained by summing up all errors found in following

processes. Thus gained built-in error rate is stable. (Most studies neglect desk
check number. It results in variation of around 0.5 ± 0.3. This invites mystery of
error.)

z Curves show (1 - e-ax) shape. It is estimated that both test and desk check is error
attenuators of a certain rate. It will result in a linear trend line in a logarithmic
scale.
Figure 3[7] shows various tests in logarithmic scale. The gradient is the decreasing

rate of each test, and is named as the effectiveness of test.
The most right side plot is (X= total test intensity, Y = error rate found in the field). In
the next left plot, X is decreased by the last stage test intensity and Y is added the error
rate found there. Finally, the most left side plot is (X =0, Y = residual error rate before
test or after desk check).

Summarizing, a software process shows following quantitative characteristics.
1. A process consumes man-hours by its productivity (e.g. Man-hour/KLoc).
2. Pure design builds in errors by its error (build in) rate.
3. Desk check and test attenuate error rate by respective error-decreasing rate.
Figure 4 shows the strategy to stabilize a process. A process is intersected in a hi-

erarchical manner by hierarchical documents. As the hierarchical division goes down,
procedures are standardized more finely or constrained more strongly, thus variations
decrease as shown in the right side. (It is widely used in h/w production process.)

Desk check should be made at the end of each process. Figure 5 explains the way.
If a process is divided to M sections of pure design and desk check, the residual error
rate is attenuated by 1/M, as shown below. (Also this is proved in h/w production.)

In the top figure, design errs at rate of Ed, and desk check does at a rate Ec. Let us as-
sume Ec is the second class of error of test, which is the probability of mistaking NG
item as Good one. After the check, the resultant error rate is Ed·Ec, namely errors are
decreased by Ec. When both are divided to M equal processes, the resultant error rate is
given by M x (Ed/M)·(Ec/M) = (Ed·Ec)/M.

Fig. 2 Error accumulations Fig. 3 Decrease of error by test

Number
of
checked
out errorsErrors

FieldQA’s testDesigner’s testDesk check

Spec. Pro-
duct

Pure
design

Desk
check

Designer’s
test

QA’s
test

Design Test

Errors Errors Errors

Number
of
built-in
errors

Pure design

Development

Number of built-in errors

0 50 100 150

10
2

10
1

100

Accumulated test intensity {(No. of test) / Kl}

Residual
error
rate
(normalized)

Environ-
mental
simula-
tion test

Gradients

chen
455

From these, it is understood that so-called heavy process features high quality, low
error rate and good stability for meeting industrial needs of reliable production.

Aforementioned characteristics well represent the present status of a process. In
order to make them applicable in any case, following expansions are made. Fig. 6
shows man-hours (MHs) of test for 4 sub-systems (teams) of a system’s initial devel-
opment. The intercept on the ordinate is MHs for pure test without errors. From it,
MHs for a test may be obtained. The gradient of the trend line is MHs for repairing
(including re-testing) an error found. From these, MHs for test of any test intensity
and any error rate may be obtained by the following equation.

 (MHs for a test)·(number of test)+ (MHs for an error)·(number of errors)
MHs for desk check, for meeting the speci-

fied residual error rate, may be obtained as
follows. Let define C be normalized desk
check man-hour as (MH of desk check) di-
vided by (MH of pure design.) During desk
check, the normalized residual error rate D is
given by D = e-aC. Based on an initial experi-
ence of C0 and D0, the necessary normalized
man-hours C1 for attaining the specified re-
sidual error rate of D1 is given by C1 = C0·(Ln
D1/Ln D0). Using these, MHs for a next pro-
ject may be planned rationally.

Productivity, error building in rate, decay constant of desk check and effectiveness
of test as well as their variations are intrinsic characteristics specific to a process (e.g.
a team). They follow logarithmic learning effect[9]. They may be improved only
when improvements are made on the process by their own efforts. When improve-
ments are made quantitatively and rationally by all the people, from top managers to
engineers, their learning effect curves grow linearly on a both logarithmic chart.

Fig. 6 Test man-hours

Fig. 4 Constraints and variation
Fig. 5 Ways of design

and check

A P

CP
OS

FP

(N u m b e r o f e rro r) / K s t e p

M a n -h o u r

fo r t e s t

0

2 0 0

4 0 0

0 2 0 4 0

Process

VariationDesign

Coding
Flow-
chart
 design

Data
flow
design

D
o
c.

D
o
c.

D
o
c.

D
o
c.

Func.
struc.
design

Detaile
d FC
design

D
o
c

D
o
c

D
o
c

General
FC
design

D
o
c

D e s i g n

Desk check

D
o
c.

Des./M

D. ck/M

M sections

1 section

Des./M

D. ck/M

D
o
c.

D
o
c.

D
o
c.

D
o
c.

chen
456

3 Discussions

From aforementioned characteristics, various overall quantitative views of the process
may also be shown by integrating them based linear nature of process. Fig. 7 shows
data of an excellent development[8] by GTE Lab in late 1970’s. The curve in Fig. a
shows the accumulated error rate as an error is found. 82.5% of errors are checked
out prior to machine test. The bottom bar graph shows break down of man-hours, and
it show that they used 30~50% man-hours of pure design for desk check. Fig. b
shows cycles of, build in by pure design and check out by desk check, for each design
phase. Fig. c shows attenuations during machine tests. These graphs show overall
status of the project.

Basic standing point is actual characteristics experienced. All characteristics are

specific to a process. In order to force same target values to a whole group, a common
process in that group has to be prepared at as is done in Japan’s software factory[10].

Various characteristics discussed may be applicable also to business process, de-
velopment of systems as well as hardware. As they are extensions of those used in
hardware manufacturing process, they may be used also there. As this model bases on
Human Intelligence, common to all kinds of human intentional activities, such wide
capability is attained. By this quantitative model, many established techniques, on
human processes, become applicable. They are project management (production con-
trol in Industrial Engineering (IE), productivity improvements (Time Study and Value
Engineering in IE), quality control (QC in IE) and quality improvement (Total Qual-
ity Management).

In non-repetitive development area, R&D management is the crucial key for suc-
cess. This excellent team’s ways are worth to be noted. 1. Scientific attitude to new
techniques, 2. Quantitative evaluations, and 3. Field trial prior to full deployment.
These by excellent managers matured this team to attain such high level.

a b
c

Fig. 7 An excellent development example

Class and
Subprogam

(Design Rev.)

Subprogram
Module
(Design Rev.)
(Walk thru.)

Module
Segement
(Rev.)
(Walk thru.)

(Code
review)

Unit and
Integration
test

System
test

15.9% 20.0% 14.8%

10.0 5.9 14.8 11.15.2 3.7

(Pure) Design Desk checks (after design) Test
Persentage man-hours

0

10

20

3.1

5.5
9.0

16.8
17.9 18.5

20.5 21
100

50

0

Accumulated
error rate found.
(error/Kilolines)

Percen-
tage(%)

0.6
2.6 3.1

Test using machine
Desk check

82.5 %

Coding
(Code read) Misc.

Class

subprog.subprog. subprog.

ModuleModule Module

SegmentSegment Segment

System structure

ClassClass

System

33.3%
10.0% 6%

18.5 14.8

Unit test
Integr-
ation
test

Residual error rate
 (E/Kl)

10.0

3.0

1.0

0.3

3.1
2.5

0.5

Start

Labo-
ratory
test

Misc

0.6

2.0
1.1

0

10

20 Total built-in rate

Error built-in
rate
(E/Kl)

21.0

3.64 3.35

5.06

11.99

2.4
2.813.64

3.1
3.5

4.11

10.43

7.8

0.54 0.95 1.56

4.19
3.1

Class
Subprog.

Subprog.
Module

Module
Segment

Code
read

Code
review

chen
457

4 Conclusion

In this paper, a quantitative model, based on simple approximations, has been pro-
posed. As it shows AS-IS, it features simplicity, wide applicability and high usability,
and independent of various methods on processes. Using this with ‘Divides and con-
quers’ of a process, and repeating improvements, a process may be tailored to any
direction. Authors wish to introduce various ways[2] to use it in the next opportunity.

Acknowledgement

One of authors, Koono, wishes to express deep gratitude to peoples in fields of Indus-
trial Engineering, Production, Quality Engineering and software in Totsuka Works,
Hitachi, Ltd. They also thank to Dr. B. H. Far and Dr. Hassan Abolhassani as well as
students of Saitama University engaged in Software Creation Project. They are also
thankful to people in EASE project for their valuable discussions. .

References

1. Koono, Z., Chen, H. and Far, B. H.: Expert's Knowledge Structure Explains Software Engi-

neering. Joint Conference on Knowledge Based Software Engineering (1996) 193-197
2. Koono, Z. and Chen, H.: Structure of Human Design Knowledge and the Quantitative

Evaluation (Part 1/2). Technical report of IEICE, KBSE2003-57 (2004) 67-72.
(In Japanese)

3. Koono, Z. and Chen, H.: Structure of Human Design Knowledge and The Quantitative
Evaluation (Part 2/2). Technical report of IEICE, KBSE2003-57 (2004) 73-78.
(In Japanese)

4. Koono, Z. and Chen, H.: A Software Process Featuring Quantitative Model. Technical report
of IPSJ, Technical report of IPSJ 2005-SE-147 (12). (In Japanese)

5. Boehm, B. W.: Software engineering economics. Prentice Hall (1981)
6. Thayers, T. A., et al.: Software reliability study. Final Technical Report, RADC-TR-76-238,

Rome Air Development Center (1976)
7. Koono, Z., Ashihara, K. and Soga, M.: Structural way of thinking as applied to development.

IEEE COMSOC Global Telecommunications Conference (1987) 26.6.1-6
8. Reproduced by authors’ responsibility from Daly, E. B. and Mnichowicz, D. A.: The man-

agement of large software development for stored program switching systems. International
Switching Symposium (1979) 1287-1291 and GTE internal documents

9. Hancock, W. M. and Bayer, F. H.: Learning curves, Salvendy, G. eds. Handbook of Indus-
trial Handbook. John Wiley & Sons (1982) 243-251

10. Cusumano, M. A.: Japan’s software factories: A challenge to U.S. management. Oxford
Press (1991)

chen
458

