New Trends in Software Methodologies, Tools and Techniques 361
H. Fujita and D. Pisanelli (Eds.)

10S Press, 2007

© 2007 The authors and 10S Press. All rights reserved.

An Introduction to the Quantitative,
Rational and Scientific Process of
Software Development (Part 1)

Zenya Koono® !, Hui ChenP and Hassan Abolhassani®
4 Creation Project, Kanagawa, Japan
b]nformation Science Center, Kokushikan University, Tokyo, Japan
CComputer Engineering Dept., Sharif University of Technology, Teheran, Iran

Abstract. Repetitive decomposing of the objective concept hierarchically,
developed for design involves a human intentional activity, ranging from
management to physical works. This model proved the empirical rules in
Industrial Engineering. In addition to these “design” process
characteristics, the “test” process is found to be a defect attenuating
process with the attenuation rate of its error rate of the second kind. As
these are applicable to any software process, they are very useful.

Keywords. Design, Test, Process, Productivity, Man-hours, Defect,
Defect intensity, Industrial Engineering

Introduction

After the end of the 19th Century the industrial production of hardware began, and
Industrial Engineering (IE)[1] was also born, and overcome many problems and built
up the Production Control of hardware. Later at the beginning of the 20th Century,
Quality Control made rapid progress. IE achieved the industrialized production.

Japan introduced IE almost 50 years later than advanced countries. Due to this
delay, the rapid deployment of IE began. In the middle of the 1960’s, the IE’s standard
time system was introduced in hardware factories and penetrated many industries. In
the 1970’s to 1980’s, Japanese Total Quality Control/Management (TQC/M) grew and
it enabled economical production and quality products from Japan poured into the
world.

IE’s quantitative, rational and scientific technologies achieved these. The purpose
of Part 1 is to introduce them to software development. This is the “product” aspect,
and Part 2[2] discusses the “process” aspect[3]. Section 1 introduces design by repeated
decomposing of the objective concept hierarchically to mean objects; it is common to
mental work and to physical work. Section 2 proves the empirical rules of IE. These
mean that the basics of IE may be used also in software. Section 3 explains that a test is
a defect attenuator, and the decreasing rate is equal to the second kind of error rate of
inspection. Various field data are explained to enable a quantitative evaluation of these.

! Corresponding Author: Representative, Creation Project, Honfujiswa 2-13-5, Fujisawa, Kanagawa, 251-
0875, Japan; E-mail:koono@vesta.ocn.ne.jp.

362 Z. Koono et al. / An Introduction to the Process of Software Development (Part 1)
1. Human intentional activity

“Stepwise detailing” by Wilth, N. in 1971 is regarded as the first proposal for a design
method in software. Later, it was developed into various structured methods from the
1970’s to 1980’s. They claim that functions have a hierarchical structure. The
hierarchical decomposition is a common structure in various design methodologies.
Figure 1[4, 5] shows the authors’ design that repeats the hierarchical decomposition of
an elementary data flow.

On the left side of Figure 1, data flows show the design record of a Clock program.
The specification “clock” is defined by input and output data to form an elementary
data flow. It is regarded as a parent and is decomposed to the detailed data flow of the
children in the next level. This consists of three serial elementary data flows “Obtain
time,” “Obtain hands” and “Display”, following Myers’ STS division[6].

As it is a program, an execution sequence of each function is needed. A flowchart
starts from a compressed barrel symbol above the first function and goes along the bold
line to reach the end mark of a compressed barrel on the last function.

Next, three elementary data flows are decomposed hierarchically. The figure shows
that of “Obtain hands.” The input and output data of the elementary data flow are
hierarchically decomposed, and using the pattern of Jackson’s program design[7], the
elementary data flow “Obtain hands” is hierarchically decomposed to three parallel
elementary data flows.

On a lower level a hierarchical decomposition of an elementary data flow “Obtain
minute hand” is shown. The detailed result shows that the degree is 6 times sixty
minutes, and the next hierarchical decompositions are to convert this from natural
language expressions to programming language expressions as the implementation
means.

| Program design ’
I_,(Data ﬂowx ;f Flowchart) (Codi) ’
> . oding
design design
A

Spec r—l Data flow dia. y%—‘ Flowchart F Source code
D "
. —=D[Ciok . . Clock()
t of: : {
a w c ObtainTime()
£ . c o ObtainHands()

Clock] | ! h 41 Displayo

0C Obtain hr |— 1
o , _-_-:le;“" | = a 0 }
w Mir] Obtain min r

nd d t g
¢ Se » | Obtain sec| ObtainMinHnad
d) = : . {
— : d|: - :

e ‘ Ofbta‘m ke:ngle W . el : ObtainAngle OfMinHand()
s J— g ==/ | ang g : ObtainWidthOf MinHans()
i ‘ e i wi i, : ObtainLengthOfMinHnad()
|5 EE o L B |
n Obtain length }
| Lof min hand n .]

Figure 1. Design records of “Clock Program”

7 Koono et al. / An Introduction to the Process of Software Development (Part 1) 363

A design is repetitive hierarchical decompositions. As it is repeated, it becomes
clearer, more detailed and minute[8]. At the final stage, they are converted to the
implementation means (c. f. source code).

20k - E,u;i)]ir of children 3.()E illulr)n;]e)r of children 30K Number of Fan-in
> L - e F of logic gate
£ r Average 2.64 § 20: Average 2.93 g 20K Average 2.37
210 L o L)
Er 2 10f 10k
- C F oy LL‘
- b R ok B L 2 . A I I
0 0)) T 4 6 8 12345 6 7 89 c 123 45 6 7
a The number of children The number of children The number of fan-in

Figure 2. Various expansion rates

As the authors were studying the automatic design learning from human design[20],
the aforementioned hierarchical decomposition was standardized. As the experience is
accumulated, it was found that it brings about a good design (ease of understanding)
and constancy of the expansion rate. Figure 2.a[9] and 2.b[9] are taken from actual
designs. Figure 2.c[10] is from a logic circuit design. In logic circuit design, a designer
synthesizes a logic circuit using lower level logic signals, which is the same as the
hierarchical decomposition. These three show a similar expansion distribution.

The average is a little smaller than 3. It is lower than the usual number of chunks.
Surveys in cognitive science found two experiments. The first one is that the expansion
rate in a short-term memory is around 2. Another is that larger chunks appear in cases
where a long time is allowed for remembering. From these, the average rate seems to
appear as a result of a speed neck. A theoretical study shows that e = 2.71828.. is the
optimum, but not yet perfect.

Let us examine other cases. Figure 3.a [11] shows the human intention for a
physical action, “take a picture.” It is hierarchically decomposed to the three
implementation means as shown in the figure. Each of these may be further
hierarchically decomposed repetitively until they are reduced to nerve signals to drive a
muscle as intended.

In military science, “Hierarchy of Object[12]” is an important empirical law in
planning a war. It is a repetitive hierarchical decomposition to the details of “occupy
island X” as shown in Figure 3.b[11]. This law is explained as follows:

The highest executive of a nation assigns the final objective of the war to the

supreme commander. This person decomposes it to several means to attain it, and

assigns each to the respective subordinates. Then these people do similar actions.

Through repeating thus the plan of the war may be detailed.

a Take a b Occupy X Commnder
picture Lisland
T | Navy | Airfarce | Amy
1 I | Approach Y | | Strike | [Land soldiers
Direct a Focuson | | Pressthe || mijesto X | | defenses | |and bring the
camerato | | the target | | shutter island island under
the target button control

Figure 3. Human intentional activities

364 Z. Koono et al. / An Introduction to the Process of Software Development (Part 1)

Thus continuing, the final objective is broken down to each move of the soldiers
involved.

As shown by these three examples of human intentional activity, this repetitive
hierarchical decomposition may involve a management objective (at management
level), a function (at design level) and then on down to human physical action. All
kinds of designs are included in these. The central core of software design is to perform
the hierarchical decompositions of concepts in the problem area. The program
technique is the implementation means used at the final stage.

2. Constancies of productivity and defect intensity

The axioms in hardware production control and
quality control in IE are following simple | Specification |
empirical rules. If they are applicable also in
software, almost all of the techniques in the IE
may be used also in software.
* Linear nature
Hierarchical decomposition and integration
(Simple arithmetic operations are possible)
* Productivity
= (Man-hours)/(number of items)
= constant
* Defect (build-in) intensity
= (Number of defects)/(number of items)

= constant
Although more than 100 years had passed since
they began to be used, these empirical rules have Figure 4. Hierarchically expanding
not yet been theoretically proven. The object of network model

this section is to prove these apply to human
intentional activities in general and also in software.

As has been mentioned before, “producing” and “designing” belong to human
intentional activity. The central core of the activity is repetitive hierarchical
decomposition. Figure 4[13, 5] shows a model of this activity. A white circle is
information; a black dot is an elementary processing node. r is the expansion rate, and
that is a constant.

In a design, an elementary decomposition node at the top decomposes
hierarchically a specification at the top to r intermediate outputs. Next r elementary
decomposition nodes operate sequentially. All nodes operate sequentially like the
single stroke of a brush, and the final outputs are generated.

Let us assume that a small time ¢ elapses while an elementary decomposition node
operates. The man-hours consumed in this network may be evaluated by multiplying
them by #(the total number of elementary decomposition nodes). Let us assume that the
elementary decomposition nodes err at a small error rate of e, and thus the erred output
propagates through to the final output. By e:(the total number of elementary
decomposition nodes), the total number of errors, namely defects, in the final output
may be calculated. Thus through these the total number of outputs, both productivity
and defect intensity, may be obtained. If these results proved both constancies, the

Z. Koono et al. / An Introduction to the Process of Software Development (Part 1) 365

empirical rules are proved by the aforementioned mechanism, 100 years after they
came into use.

When r is constant, the characteristics of the hierarchically expanding network
model shown in Figure 4 may be calculated using the formula of a constant-rate
increasing series. Let us assume that the network consists of n levels from the top to the
bottom. Let N be the total number of nodes in the network, and N, the total number of

the output information. These are expressed as follows:

N, =1+rl +12 403 + 4 = (- 1)/(r-1) Eq. (1)
No =11 Eq. (2)
Np/NO = 1/r = constant, provided that n>1. Eq. (3)

Let assume that man-hours for the processing of the network are the sum of small
time 7 consumed at each node for decomposition. The productivity P may be evaluated
by (the total number of the output, divided by the man-hours).

P =Ng/(¢ 'Np) = r/t = constant Eq. (4)

The following characteristics are obtained:

* The productivity is constant
« The man-hours are proportional to (size)!
* The system is a linear system

These are applicable to both mental work such as design and also physical work in
hardware production.

Let assume that each node errs at the small rate of e during the processing of the
network and the error propagates to the output. The defect (build-in) intensity E may be
evaluated by the total number of the nodes multiplied by e and divided by the total
number of the output.

E = e (Np/N() = e/r = constant ‘ Eq. ()
The following characteristics are obtained:

* The defect build-in intensity is constant

» The total number of defects is proportional to (size)!

* The system is a linear system

Empirically used constancies are theoretically proved, and the inner mechanisms
are also clarified. The linearity guarantees hierarchical decomposing and integration as
well as simple (arithmetic) operations for their characteristics. They are useful for
practical use. Also, it is noteworthy that errors during intentional activity arise from
human mistakes. The actual field data of software developments verify these
relationships.

It is desirable that they are many, not biased, from various applications, ranging
from small size to large size and implemented by various languages. The materials
chosen are from the 1970’s and the 1980’s, when the initial difficulties of large
software developments were overcome but most developments were new and almost
without reuse. Figure 5 is man-hour data and Figure 6 is defect number data, both
plotted on both-logarithmic scales, where the horizontal axis is the software size and
the vertical axis is man-hours or the number of defects (errors) and the plots show a
belt-like distribution.

Figure 5.a[14] is re-plotted from Nelson’s RADC (Rome Air Development Center,
USA) data, adding two sub-trend lines, being equal distance from the center trend line,
one located at 1/3 times (standard deviation) of the center (mean) line and one located
‘at 3 times (standard deviation) of the center (mean) line. Nelson reported that the center

366

trend line equation, gained statistically,
is X0975873 (The difference of the
exponent of 0.024127/1.0 is not so
significant as to deny the linear nature.)

Figure 5.b[15] is re-plotted from
Boehm’s COCOMO data, and Figure
5.c[16] is re-plotted from Yoshida’s
Fujitsu data in linear scales. Both plots,
as a whole, show a trend of Y oc X!.
They are processed graphically in
following way:

A center trend line of Yoc X! is
drawn to pass through the center of
the plot group. The position of the
interceptor of the Y-axis is
adjusted as follows:

* Two sub-trend lines are drawn
up and down along and equal
distance from the center trend line.
The distance and the interceptor
are adjusted so that a few plots are
outside of the belt-like zone. The
distance is represented as N, which
is the normalized number of the
distance by the center (mean)
value’.

These three figures show that, plots
in the belt-like zone show a trend of
Yoc X! or the productivity is constant,
or man-hours are productivity
multiplied by the software size. Also
from these three data the linear nature
of the man-hours is verified.

Defect data, Figure 6[17], is re-
plotted from Thayers’ third project data
in linear scales, and the same graphical
treatment as above is made. The main
trend line shows that Yoc X! or defect
(built-in) intensity is constant, and the
linear nature of the defect intensity is
verified.

Thus both constancies of
productivity and defect intensity are
verified and the linear nature is also
verified. As both constancies of

Z. Koono et al. / An Introduction to the Process of Software Development (Part 1)

7

100
10K
1K
Total
Man- 1
Months
1
100+, 1K 10K 100K M 10M
DSLOC
10000
<=
—
=
g r
§ 1000 [
=
<
g
g
()
g 100[
%
2
(5]
>
[L
A 10
l/r: n s 1 1 'S 1 1 1
1K~ 10K 100K 1000K
Software size (DSI)
1000
< 500
g
5 200
[
£
5100
g .
£ SOfF
Q.
2
2 20
a
10

] 1 |
20K 50K 100K

Number of lines of code

5K 10K

Figure 5. Software size vs. man-month
(Both logarithmic scales)

productivity and defect intensity share the same body, the node, these are due to the

2 It follows the practice of the Human Reliability Engineering (HRE)[21]. It recommends use of 3 time
(N = 3) of the Human Error Probability (average) value for systems evaluation. If it is critical, use N = 5.

Z. Koono et al. / An Introduction to the Process of Software Development (Part 1) 367

conclusion. But, the fact that N = 5
only in this case shows that there must 100}
be something particular here. This will
be discussed later.

The next problem is to clarify the
belt-like zone. In Figure 5.b, 5.c and 6,
the belt-like zones, are partitioned to
five parallel sub-belts of the same
width, and the number of plots in each
sub-belt are shown in bar charts at the e e ——
top right of each figure. They show a Software size (Steps)
bell-like shape, or the facts show a
lognormal nature.

Statistics say lognormal
distribution arises as the multiplicative product of many small independent factors. (ILe.
epidemiological data and sociological data) In an idealistic lognormal distribution, the
plots shown on a log-scale form a normal distribution, and 99.74% of the plots are
contained in a range +/- 3:(standard deviation) centered at the average. The standard
deviation is proportional to the mean. This is the mechanism that makes the plots show
a belt-like zone. Distribution curves in Figure 5 and 6 show their near lognormal
distribution nature. Considering the background of lognormal distribution, there are
many other similar characteristics.

Figure 7.a[4] shows the growth of “run time.” The horizontal axis shows days, and
the vertical axis shows the run time in logarithmic scale. It is a “run time” data during
an environmental simulation test in the last phase of the system test. A random but
heavy load is applied to an online system, and the “run time” is the time from the start
to system stoppage by some reasons. When it stops, the cause (usually a software bug)
is sought. After it is fixed, the test starts again. The plots show a linear growing trend
line, caused by a negative exponential decay of the residual defects. Along the main
trend line, two sub-trend lines are drawn, and the normalized number N is written (in
the same way as before). From this figure, it is understood that the “run time” shows a
lognormal-like distribution multiplied by a negative exponential decay’, where N is 3.2.

Number of errors/defects
=)

Figure 6. Software size vs. defect (log)

102l Time between

: S
failure =
Q.
Gy
S
5
a)
£
j=]

Z 1 | - 1 1

1 3 10 30 100
Month after delivery

Days if environmental simulation test

Figure 7. Other lognormal characteristics

3 The central trend line is named the Kudoh line from the name of the finder. Extending trend lines is
possible when the system reaches the desired “run time”. Brettschneider proposed a way to calculate the
number (day) of the residual defects[19].

368 Z. Koono et al. / An Introduction to the Process of Software Development (Part 1)

Figure 7.b[18] shows the growth of the accumulated number of defects of online
systems sharing a mother file. The horizontal axis is “days after the system are put into
service,” and the vertical axis is the accumulated number of the patches, both in log
scales. A system operates with a common mother file and the patches. When some
trouble is found, it is analyzed and if necessary, the corresponding patch is prepared.
Then, the troubled system is stopped, and all yet un-installed patch(es) including the
new ones are installed. The Curves are the loci of each system, and they show a belt-
like zone. Also this figure shows the similar trend as Figure 7.a, and N is almost 3.

Figure 5.a (N = 3) case seems to be an all in-house development. Also Figure 7.b
(N = 3) is the purest case and Figure 7.a (N = 3.2) suffers from the noise (repairing
time). In Figure 5b (N = 4) (COCOMO data case), there are three plot groups.
Exponents of each plot group are as follows; 1.05 for in-house small development
group and 1.20 for large development by outside people group and N = 1.12 for the
intermediate group. Thus, Figure 5.b is estimated to suffer from the noise by (non-
hierarchical design). Figure 6, where N = 5, is the worst case. It will be explained later.

The external characteristics of human-related process should show lognormal
distribution, caused by many independent factors influencing them as the multiplicative
product. When some other causes operate, as the standard deviation increases the
distribution becomes broader, resulting in a larger N. Conversely, when some factors in
the process are stabilized, the distribution becomes narrow, resulting in a smaller N.
Therefore for their intrinsic nature, aforementioned discussion is correct.

3. Quantitative characteristics of defect removal

L Design] { Test j
——_— I

Pure Desk Designer QA Prod-
Spec .
design check test test uct

Total build-in

Build-in
number

Residual
number

. Pure des. ' Desk che. Designer t. QA test Field '

Figure 8. Built-in and decrease of defects

Figure 8[9] in the upper diagram shows a development process. The process flow for
design is “pure design” and “desk check,” and for the test is “designer’s test” and “QA
test.” (QA is Quality assurance, and some do not have it.) Pure design does not include
any checks, and instead desk checks may include any kind of check.

Figure 8 in the lower diagram shows the build-in and removal of defects. In pure
design, defects are build-in linearly with time. The total build-in number is E4 and is
shown by a broken line. The following desk checks and two cascaded tests are the
defect removing process, with negative exponential decay. The number (Ed) is equal to
the total number of defects found in following stages, as shown below.

Eqs= desk check removed number

+ designer’s test removed number
+ QA’s test removed number
+ number found after delivery Eq. (6)

Z. Koono et al. / An Introduction to the Process of Software Development (Part 1) 369

Among the three defects removing processes, the desk check is the most effective.

The defect intensity, namely (the build-in number of defects)/(software size), are
the intrinsic external characteristics of a design process. Thus the build-in number of
the defects must be measured. This requires that all defects be recorded and removed.
Among them those removed during the desk checks are the most important. But many
people neglect the importance of the number removed during desk checks. Also
Thayers’ case neglected these.

Excellent designers remove 80% of built-in defects. However some remove only
10%. In this case, the apparent average defect intensity is decreased from 1 to 0.45,
{(0.8 + 0.1)/2 = 0.45}, of the original. In addition to this, a new variation of the
amplitude 0.35, {(0.8 - 0.1)/2 = 0.35}, is added on the existing one, which is apparently
0.45. This variation amplifying mechanism is the major cause of the larger value of N =
5 in Thayers’ case®. Thus, the idealistic “design” builds in defects of the logarithmic
distribution’. Accurnilated test intensity (test/Kloo)

In order to count the removed number of 0 2 100 150
defects, a designer declares the closure of a ' ' '
design, and beyond this point every defect found
is recorded. Using thus recorded defects; the
exact defect intensity may be obtained after a
project. A record of desk checks may be simpler
than those for the tests. Surely it needs additional
man-hours to take all the records, but without
this we might loose sight of the quality.

In the bottom level of the diagrams of Figure
8, both the overall decaying curve and the
decaying curve for each section may be regarded
as a negative exponential decay. When they are
plotted on a logarithmic scale chart, the negative
exponential decay will appear as a decreasing Figure 9. Attenuation by test
linear trend line.

Figure 9[4] shows several data that show decreasing trend lines. The gradient of a
trend line is named as the “effectiveness of tests” to show the attenuation of defect/test.
In the figure, the horizontal axis shows the normalized test intensity (number of
test/software size), and the vertical axis shows the normalized residual defect intensity.

The bottom right-most point shows (X = total accumulated test intensity, Y = the
residual defect intensity after delivery). The top left most point on the vertical axis is
the residual defect intensity after desk checks, or at the start of the test. As the point
goes to the left, the number of defects removed is accumulated. As the point goes to the
right, the number of tests finished is accumulated®.

A test is a comparison test of the following two:

4 Thayers’ data included other randomness. The data is for routines of one project, and the distribution
will have a center axis along the central trend line starting from (X = the total size, Y = the total number of
defects) and the shape seems to be like an umbrella without the top part. This explains the spread of the
distribution when X is small.

> Shiomi in HRE made an elaborate study on ‘typing of KB’, and proved both the errors and man-hours
show a logarithmic distribution by the distribution graph[22].
%In Figure 9, vertical dotted lines appear. They are for environmental simulation tests, in the early stage.

At that time, various tests of the environmental simulation test were recorded as one test. Later, it was
partitioned into many tests.

370 Z. Koono et al. / An Introduction to the Process of Software Development (Part 1)

« program output as the result of so-called design

* expected output derived from a specification.
This test suffers from two kinds of statistical errors. The first kind of error (probability)
is to mistake a good item as bad, and the second kind of error (probability) is to
mistake a bad item as good. The latter problem is related to the purpose of the tests.

Let us assume the defect intensity of the program is Ep. Then let us assume the

second kind of error of the test is Ey. The defect rate after the test/check (the
comparison) is Ep*Er. Namely, the initial defect intensity Ep, is decreased to Ep*Er.

Therefore, a test (desk check) is equal to a small attenuator of defects. It is the reason
for the decreasing trend line. But, it should be remembered that these are based on the
random nature of defects and tests.
1. If the initial defects are decreased, the curves shift downward.
2. If the number of tests is increased, the trend line is extended to the right by the
amount of the increase, and then the final residual defect rate is decreased.
3.If the second kind of error probability is decreased (by making the tests more
accurate) the curves go down more sharply, thus the residual defect intensity is
decreased.
As these show, following quantitative, rational and scientific treatments are
possible in desk check and test.
* Quantitative measurements with quantitative relationships
¢ Quantitative planning, execution, evaluation and improvement
* Quality control and Total Quality Management

4. Concluding remarks

Part 1 explained the basic structures and the fundamental characteristics of human
intentional activity putting emphasis on software, excluding the learning effect. Due to
repetitive hierarchical decompositions of human concept, in any human intentional
activities, ranging from management (concept level mental operation), design (function
level mental operation) and physical works, following fundamental relationships exit.

¢ Productivity = (The number of output)/(man-hours) = constant

« Man-hours = (The number of output)/productivity

« Time consumed in mental operations causes consumption of resource.

* Defect (built-in) intensity = (The number of defect)/(the number of output)

s (The number of defect) = {Defect (built-in) intensity } «(the number of output)

» Error of a mental operation causes a defect.

* Design is a linear system, where decomposition and integration is possible.

* Defect removing (desk check and test) process is an attenuator of defect, and the
attenuation rate is the second kind of the error probability.
These apply in any kind of “process” of all of human intentional activities. This wide
applicability based on the scientific foundation is the first salient feature of this system.

Based on aforementioned relationships, Industrial Engineering has brought up
various engineering systems, such as production engineering, production control,
management engineering, quality control and so on. By them, the present day world
has been enjoying prosperity. Software industry has been long staying primitive labor-
intensive industry up to now. This system indicates that those engineering systems may

Z. Koono et al. / An Introduction to the Process of Software Development (Pgrt |) 371

also support software industry. Software works may be managed quantitatively,
rationally and scientifically. Thus software industry may become industrialization.

Acknowledgements

One of the authors, Koono wishes to express his deep gratitude to superiors, colleagues
and forefront people in Totsuka Works, Hitachi, Ltd. for their kind cooperation. This
study is the result of their generous help. The authors wish to express their thanks also
to those who contributed to the Software Creation Project. They are also very thankful
to Mr. Daniel Horgan for his very careful corrections and valuable advice on their
English.

References

[1] G. Salvendi, ed., Industrial Engineering Handbook 1982, John Wiley &Sons.

[2] Z.Koono, H. Chen and H. Abolhassani, An Introduction to Quantitative, Rational and Scientific
Process of Software Development (Part 2), SOMET 07, pp. 372-390, November, 2007.

[3] Z.Koono and H. Chen, Toward Quantitative, Rational and Scientific Software Process, Software
Process Workshop 2005, pp. 454-458, May 2005.

[4] Z.Koono, K. Ashihara and M. Soga, Structural Way of Thinking as Applied to Development,
IEEE/IEICE GLOBECOM 1987, pp. 26. 6. 1-6. 6, 1987.

[51 Z.Koono, H. Chen and B.H. Far B, Expert’s Knowledge Structure Explains Software Engineering,
Proc. of Joint Conference on Knowledge-Based Software Engineering 1996, pp. 193-197, Sept.
1996.

[6] G.J. Myers, Reliable Software through Composite/Structured Design, John Wiley and Sons, 1979.

[71 M.A. Jackson, Principles of Program Design, Academic Press, 1975.

[8] H. Chen, B.H. Far and Z. Koono, A Systematic Construction Method of an Expert System Used
forAutomatic Software Design, JIJSAI Vol. 12, No. 4, pp.616-626. 1987.

[91 Z.Koono, H. Chen and H. Abolhassani, Knowledge Structure of Human Intentional Activities and
Its Work, IEICE TR KBSE2006-56 (2007-01).

[10] A. Kawamata, Electronic Circuits of the DEX-1, Development Report of NTT, Vol. 16, NO. 11,

pp. 2275-2306, 1967.
[11] Z.Koono, H. Chen and H. Abolhassani, Knowledge Structure of Human Intentional Activity and
its Work, IEICE TR KBSE2006-56, 2007.
[12] Carl von Clausewitz, Vom Kriege, 1832.
[13] Void
[14] R. Nelson, Software Data Collection and Analysis at RADC, Rome Air Development Center,
Rome, NY, 1978.

[15] B.W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

[16] M. Kataoka, S. Hanada, M. Teramoto, S. Yoshida, M. Ohba, and K. Fujino, Panel Discussion,
State of The Art and Issues in Software Metrics, JIPSJ, Vol. 26, No. 1, pp. 42-52, Jan. 1985.

[17] Thayers et al., Software Reliability Study, Final Technical Report, RADC-TR-76-238, Rome Air
Development Center, 1976.

[18] Z.Koono, H. Chen and H. Abolhassani, Quantitative Evaluation of Process and Product and
Their Use, IPSJ SIG TR, 2005-SE-150, 2005.

[19] R. Brettschneider, Is Your Software Ready for The Release?, IEEE Software, Vol. 6, No.4, pp.
100, 102, 108, July/August, 1989.

[20] Z. Koono, H. Abolhassani and H. Chen, A New Way of Automatic Design of Software
(Simulating Human Intentional Activity), SOMET 06, pp. 407-420, 2006.

[21] A.D. Swain and H.E. Guttman, Handbook of Human Reliability Analysis With The Emphasis on

Nuclear Power Plant Application, NUREG/CR-1278, SAND 80-0200 (1983).
[22] H. Shiomi, On Analysis and Summarization of Human Reliability Data for Simple VDT
Operation, BICRMS 92, pp. 372-377, 1992.

